

UDC-28/39 Up/Down Converter

Product Specification

Version	Issue date	Changes	Remark
0.1	2024/2/26	Initial draft version	

IMPORTANT

This document contains important information and
Should not be disclosed to third parties without prior written consent of amazipoint technology Ltd.

Address : 2F, No. 113, Zhongyang Rd., Xindian Dist., New Taipei City, Taiwan(R.O.C)
www.amazipoint.com

Signature:

Author:	Reviewed by:	Approved by:	Remarks:
Martin Ho			

UDC-28/39 Up/Down Converter

1 Introduction

UDC-28/39 is a high bandwidth, low noise and distortion up/down converter that convert IF IN/OUT signals to and from RF OUT/IN signals. It is the best choice for applications, such as :

- Millimeter-wave 5G applications
- Point to point microwave radios
- Radar and electronic warfare systems
- Instrumentation and automatic test equipment (ATE)

2 Key Features

- Low EVM : < 2.8%
- Low LO frequency step : 1MHz typical, could be lower under request
- Single sideband up converter for suppressing the unwanted sideband
- Automatic crystal frequency calibration
- Firmware update through USB port
- SDK and example available for host application

3 Product Picture

4 Specification

- Output Frequency Range :
 - UDC-28 : 24 ~ 30 GHz
 - UDC-39 : 37 ~ 48 GHz
- Signal bandwidth :
 - One single signal having a bandwidth of 1 GHz
 - 10 signals of 100 MHz bandwidth combined together by a RF combiner
- Min and max frequency at the RF IN
 - 2000 ~ 4000 MHz
- LO frequency range:
 - UDC-28 : 22 ~ 28 GHz
 - UDC-39 : 35 ~ 46 GHz.
- LO frequency step :
 - 1MHz

- Number of RF Channels :
 - 2 Channel with both TX and RX for each channel
 - The LO frequency is the same for all 4 TX/RX ports
- Internal 10 MHz clock :
 - Initial frequency tolerance : ± 300 ppb @ 25°C
 - Frequency stability of ± 280 ppb over -40°C to $+85^\circ\text{C}$
- CLOCK_IN and a CLOCK_OUT connectors
 - SMA female
 - > 500 mating cycles
- EVM :
 - < 2.8% full band
- Conversion gain(**draft**)
 - UDC-28
 - ◆ Up conversion : 23~27 dB
 - ◆ Down conversion : 10~14 dB
 - UDC-39
 - ◆ Up conversion : **TBD** dB
 - ◆ Down conversion : **TBD** dB
- Channel1 / Channel2 signals isolation :
 - UDC-28 : > 35 dB
 - UDC-39 : > **30 dB(draft)**
- Power Consumption(**draft**)
 - < 1 A @ DC 12V
- Recommended signal power range (**draft**) :
 - IF
 - ◆ Input : -15 ~ -20 dBm
 - ◆ Output : -5 ~ -2 dBm
 - RF
 - ◆ Input : -15 ~ -20 dBm
 - ◆ Output : -5 ~ 0 dBm
- Host application interface for control and configuration :
 - USB type C port
 - Serial interface
 - ◆ Baud rate : 115200 bps
 - ◆ 8/N/1 protocol without flow control
 - ◆ Without input echo
- 4 IF ports configured as 2 TX and 2 RX
 - SMA female ports (1 port per channel)
 - > 500 mating cycles
- 4 FR2 RF ports :

- UDC-28 : 2.92mm female connector
- UDC-39 : 2.4mm female connector
- > 500 mating cycles
- Power supply :
 - 12V, 5.43A adaptor
 - Plug type configurable

5 Functional Block Diagram

The following shows the block diagram of UDC-28/39 :

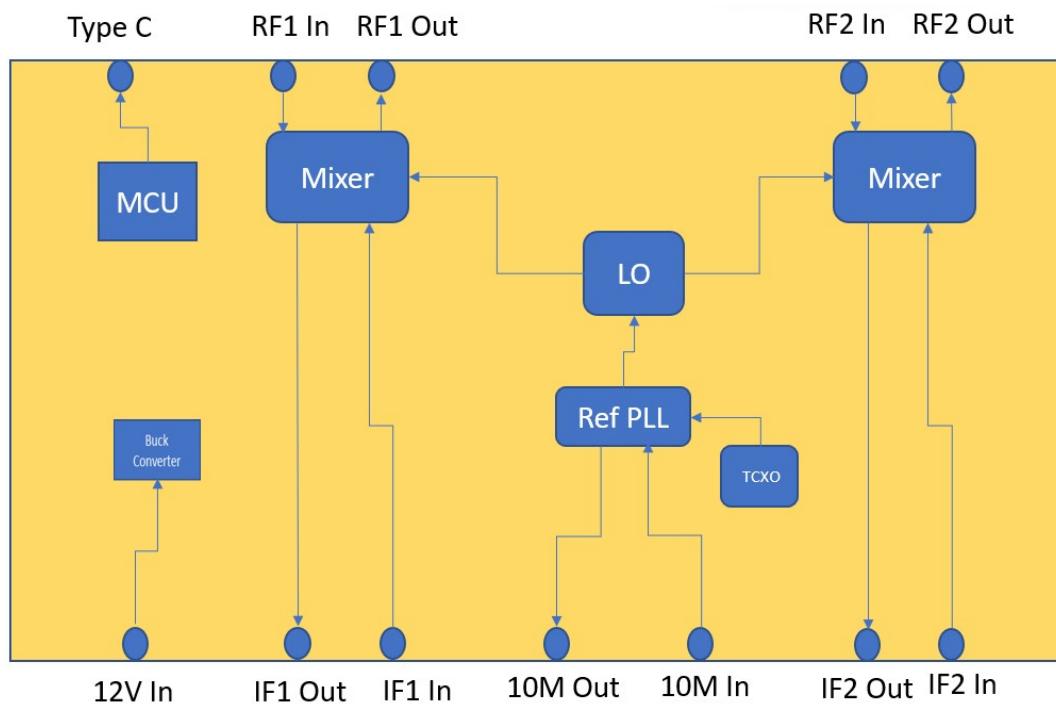


Figure 1: Functional Block Diagram

6 SDK

The SDK is a host controller example program written in python with following functions :

- Send console command to UDC
- Receive response from UDC and print response to console
- Update firmware

6.1 SDK installation and execution procedures :

- Install pyserial
- Make sure you are in the “root of the repository/stm32loader”
- Make sure PYTHONPATH includes “root of the repository”
- In Windows, set PYTHONPATH in : My Computer/System > Properties > Advanced System Settings > Environment Variables >
- Run program (COMx is the com port connecting to UDC console)
 - python main.py –p COMx
- Console command can be typed directly in the shell
- Response from UDC will be shown in the shell

6.2 Firmware update procedures :

- Put new firmware in the same directory with main.py
- Rename the new firmware as fw.bin
- Run SDK python program
- Type 'UpdateFw' command
- Power off and on the UDC device
- Wait for the prompt “Initing Clock” and then power off and on the UDC device again